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The consequences of keeping terms in addition to the leading terms in each order of perturbation theory 
are investigated. The model is the g<ps theory and the method is that of Bjorken and Wu. When the second-
most dominant terms in each order of ladder graphs are summed, a second-order pole in the angular momen
tum plane is obtained and the contribution to the amplitude dominates the sum of leading terms at high 
energy. When the class of terms to be summed is further enlarged in a well-defined way, the simple Regge 
behavior is restored. The divergence at threshold in the trajectory function obtained by summing the lead
ing terms is not present in the final result. The question of the high-energy behavior of the complete sum of 
the ladder graphs is still unsettled. 

I. INTRODUCTION 

IN recent months a number of authors1"8 have 
employed perturbation expansions to study the 

high-energy behavior of scattering amplitudes for 
various field theoretic models. The common procedure 
in these studies has been first to choose a restricted 
class of diagrams, usually the class of ladder graphs. 
Next, the leading term (i.e., the term which is largest 
as the energy s1/2 increases to infinity) is determined in 
each order of perturbation theory. These leading terms 
are then summed. It has been realized by several 
authors that the procedure of summing leading terms 
has not been justified mathematically. However, the 
general hope is that an indication of the high-energy 
behavior may be obtained in this way. 

The aim of this paper is simply to investigate the 
consequences of keeping terms in addition to the 
leading terms in each order of perturbation theory. 
For this investigation, we will confine our attention to 
the ladder graphs in the g<pz theory. As is now well 
known, the leading term in £n(s,t), the amplitude for 
the ladder of n+1 rungs, Fig. 1(a) behaves as (lns)n/s 
for large s. However, £n(s,t) also contains terms which 
behave as (lns)p/s, p<n, (lns)n/s2, etc. A consistent 
scheme for calculating the high s behavior of the 
complete amplitude £(s,t) = Y,n £n(s,t) would involve 
keeping at least all terms which behave as (lns)p/s. 
Since this task is formidable, we have decided that the 
most instructive approach is to enlarge the class of 
terms that are summed in several steps and to study 
the resulting high-energy behavior at each step. In 
Sec. II the method used is presented and the result of 
summing the leading terms is rederived, Eq. (2.19). In 
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addition, the terms which behave as (lns)n/s2 are 
calculated and are shown to be negligible compared 
with the leading terms, Eq. (2.24). By enlarging the 
class to include some terms which behave as (lns)p/s, 
we obtain a result which has the same s behavior but 
a modified dependence on / and g2, Eq. (2.26). In Sec. 
I l l , the second leading terms, those that behave as 
(\ns)n~1/s, are summed and the high-energy behavior 
(lns),ya(0 is obtained; i.e., the sum of the second leading 
terms dominates the sum of leading terms and the 
simple Regge behavior is lost. In Sec. IV, the remaining 
terms are discussed; when a well-defined class of these 
is summed, the simple Regge behavior is restored. The 
new a(t) obtained at this point has the nice feature 
that the threshold divergence which had been obtained 
in the earlier calculations is no longer present. Some 
algebraic details are given in the Appendixes. 

One simple example of the importance of additional 
terms in these series is provided by the crossed graphs 
(s <-> u) of Fig. 1 (b). If these are included with Fig. 1 (a), 
one quickly finds that the sum of leading terms is 
identically zero. If one keeps additional terms, such as 
those used in obtaining Eq. (2.26), the usual Regge 
behavior is obtained. We do not present these results 
in detail since they are obtained by trivial modification 
of the calculations presented below. 

FIG. 1. (a) Ladder graph, (b) Ladder graph with $ <-> u, 
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II. THE MODEL AND METHOD The form of the coefficient of s in Q makes the 

In this paper we restrict our attention to the gf ^e l l in transform* a very convenient:way-of: studying 
model and adopt the method used by Bjorken and Wu.* fe asymptotic behavior of £n(s,t). The Melhn trans-
The scattering amplitude for the ladder with n+1 iovm Ln{a,t) of £n{s,t) is 
rungs is [Fig. 1(a)] ~*> 

. £ » ( « , < ) - / ds£n(s9t)sr^9 (2.9) 

£ « M = " \#kv#knTI or 

Zn(a,0 = ( —) (-ix2)wr(-a>--«/2/ ••• 

xn n . (2.D w Jo 

y»i p%-\-1 — ie *-i g&
2+1 — ie ,.» n + 1 

X / d%v 'dznA~2~aeiJ TL xt
a. (2.10) 

The propagator (—i){k2+l —ie)~l can be represented J 0 *=i 
by 

(a,/) is analytic for — l < R e a < 0 . (This follows from 
— - = / dxexp£—ix{k2+l —ie)~], (2.2) the continuity of the integrand and the uniform 
k2+l—ie Jo convergence at the lower limit for R e a > —1.) The 

, , A , region of definition can be extended by integrating by 
and. dun{s.t) becomes , .,i . . -i • . ,. v , 

v ' J parts with respect to each %i; integrating by parts once /fg\2in+i; /.oo ,.<*> gives 
£n(s,t) = ( — ) / • • • / dxV-dxn+1 /fg\2(n+l) (—l)** 1 

VTT/ JO Jo L„(fl5,/) = ( —J (-i7r2)nr(-a>- i 7 r^2 

W (1+a)^1 

Xdyi • • - dynd%i — -dzn I dAki • • • dAkn /-00 n+i dn+1 

J v / d<r. J.*- TT ^,«+i X / dxr-dZnTlx^1 ZA~2-«eiJl. (2.11) 
7 o i==1 dxi • • • dxn+i 

n+1 n 

Xexp{- i [E^(W+l)+Eyy(# /+ l ) Thus, Ln(«,0 can be analytically continued into the 
region — 2<Rea:< —1 except for a pole of order n+1 

n at a— — 1. Another integration by parts further extends 
+ S ^ f e 2 + 1 ) ] } . (2.3) the region of analyticity and shows that there is a 

fc==1 pole of order n+1 at a= — 2. 
The inverse Mellin transform is 

The k integrations can be performed in a straightforward 
manner by taking advantage of the analogy between 1 /•*+;*> 
an electric circuit and the Feynman graph: £n(s,t)=*—; / daLn(a)sa, (2.12) 

£ n ( ^ ) = ( —) (-t7r2)w / • • • / dxv • • where - l < o - < 0 . Since 

(Ins)6 1 1 /•ff+*a 5a 

X ^ n + l # l « ' ' </?»<&!' ' ' ^nA- 2 ^^ , (2.4) = / da , (2.13) 
where *a T ( 6 + l ) 2iri J ̂ ioo (a+a)1*1 

n+1 
Q=sA~1T[ X-+J (2 5) ^ e P°^es at —1 and —2 give rise to terms in the 

i=i ' asymptotic form of £n(s,t) of the form 

A=deL4 , (2.6) n 

r=0 

n 

(bu)' 

(\nsY 
J=Jl(A-1)I-(YsZk+YkZj)- {Y5+Z3)(Yk+Zk)\ and 

y.fc L2 J 
— -. (2.14) 

-Xx+ieEXx+Fx+Zj, (2.7) r=o ^ 
and 

Aa=Xi+xn+1+Yi+Zi, (2.8a) In Eq. (2.12) we may deform the contour as shown 
. in Fig. 2. The contribution from the horizontal segments 

Aij=Aji=xn+i+Yj+Zj, j>i (2.8b) vanishes as the imaginary coordinate goes to infinity 
n+i n n while the contribution from the left-hand vertical goes 

Xi=J2 %j , Yi=J^ Ji , Zj= L Zj • (2.8c) 9 R< Courant and D. Hilbert, Methods of Mathematical Physics 
j—% ]—i (Interscience Publishers, Inc., New York, 1953), Vol. I. 
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a PLANE 

FIG. 2. Contour 
for inverse Mellin 
transform. 

by parts once more: 

V2(n+D 

X (2+a)-""1 f 
Jo 

n+l 

Q2n+2 

X [ A ~ 2 - V ] . (2.20) 
d#i2 • • • dxn+i2 

For a near —2, 

to zero faster than s~2 as s —>oo. Thus, we may calculate 
the asymptotic behavior of £n(s,t) to order 5~2 by 
simply evaluating the integrals around the small 
circles of Fig. 2. 

To calculate the leading term from the pole at 
a= — 1, one simply sets a= — l in all factors of Eq. 
(2.11) except (l+a)n+1. The integrals may then be 
done, using the fact that for all # ;=0 , 

n uT y{Zi "I 

A o - I K y d - * ) , / o = E t (l-ie)(yi+zi) , 
i=i i-iL yt+Zi J 

and we get 

g2 

Ln(a,t) H^-iWKl+a)-"^1, (2.15) 
7T2 

where 

g Z"0 0 

L„(a,0 ( ig 2 ) n (2+a)-»- 1 / ^ r - . 
7T2 7o 

X^zJ 
^n+1 

Ldxi---d# n + 1 J^=o 1 -*x 

(2.21) 

For / = 0 , we have 

d » + l 

d#i* • • dxn+i 
= - 2 C A - V J ] I i = 0 , (2.22) 

xi=0 

so 

r r *y* i 
7__i(/) = i / dydz(y+z)~l expi (l — ie)(y+z) 

Jo Ly+z J 

Z n ( a , 0 )—2f -£g«7- i (0 ) ]» (2+a ) -» - 1 , (2.23) 
7T2 

or from both poles, we obtain 

g2 1 
£n(s,oy 

ir2 n\ 
lg27-i(0)^™A-+~l. (2.24) 

= 2 / dt' 
J 4 t'-t-ieYt'it'-uv-m 1/2 

= [ - i ^ ( l - i / ) 3 " 1 / 2 t a n h -
/ 4 \ - i / 2 

V-T) ' (2.16) 

and 

Im7- i (0 = 2 7 r [ / ( ^ - 4 ) ] - 1 ^ ( / - 4 ) . (2.17) 

Note that T_I ( / ) becomes infinite a t 2=4. The 
inverse Mellin transform of (2.15) gives us 

£n(s,t)^-i [ g V i W ^ O n s ) " . (2.18) 
7r2 n\ 

When this expression is summed over all orders of 
perturbation theory, the usual Regge behavior is 
obtained2,3-5 

£(s,t) = E £n(s,t)-—i—s^y-^-K (2.19) 

The leading term from the pole at a——2 may be 
studied in exactly the same way; integrate Eq. (2,11) 

Thus, the leading contribution from the pole a t 
a— — 2 gives rise to a term in «£(.?,/) which at t=0 may 
be neglected as s —> °o. 

At this point, an example is given of the rather 
different behavior that may be obtained if we keep 
some of the terms that have so far been neglected. 
Suppose in Eq. (2.11), a is set equal to —1 only inside 
the integral sign. In this way we keep some of the 
terms that go as ^ ( ln s ) 2 ' , p<n, in £n(s,t). Then 

ig\2 1 dn 

3.MM-) - I C g V i ( * ) > 
dan 

X [T ( -a )6^»« /Vg«_- i . (2.25) 

The result of summing Eq. (2.25) over n is 

g2 

£ (s,t) — — i—e-^y-iW l2 

TV2 

X r [ l - g V i W>- 1 + ^ 2 ^ 1 ( < ) . (2.26) 

While the dependence of £(s,t) on s is unchanged, the 
dependence on t is drastically modified. If we write 
£(s,t)^>l3(t)sa(t\ we see that /3(t) is completely deter
mined by the Regge pole a(t). Note that now the 
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entire amplitude becomes singular at an infinite m= 1, in the series expansion (3.1) is 
number of points and that if g 2 > l it becomes singular . 
even in the physical region, *<0. (Presumably, the L m , A ^ l nf)^T( a w.™/* ( ^ 
perturbation calculation ceases to be valid when g2 n ' T2 ( l + a ) n 

becomes so large.) 
/-00 n+l dn+l 

X\ / dxv-'dZnOnJlxi'] [ A ~ V J ] III. EXPANSION ABOUT a = - l AND SECOND 
LEADING TERMS U o %~L OXv ' ' °%n+1 

In this section, we investigate the terms which go as f . 7 ^ r A , . n n ,~ ,\ 
n w ^ T 4.- i i , n - / dxv-dZn [ A - V J l n A ] . (3.6) 
(ms)m/sy m<n, as s—»<*>. In particular, we shall / l ^% ... $x J 
discuss the second leading term, m = n~ 1, in some 
detail. The easiest way to obtain these terms is to The two integrals in the bracket can be reduced to the 
return to Eq. (2.11) and expand the integrand in following simpler forms: 
powers of (1+a). 

r°° n+i dn+1 

Ln(a,t)= Z L»<«>(a,0 , (3.1) / &*v ' • * » ! > I I *<]- ; [ A " V ] 

W h e r e = ( - l ) " { 2 [ - f 7 - i ( 0 ] ^ C - « - i ( 0 ] 
i (_-l)«+i 

Lw(-)(a,0=-fe2)w+1r(-a)e-—/2 +^-i)C-iT~iW]^2[(-W-i(/)]}, (3.7) 
7T2 ( l + a ) n + 1 and 

m ( l + a ) m ( — l ) m ~ Z r°° n + l /.«> ^ n + l 

X E / ^ • • • ^ n D n l l ^ ] ' / dxv--dzn [ A - V ' l n A ] 
z=o (m-l)\l\ Jo t-i J 0 a x r - a ^ + i 

_m ( l + a ) m ( — l ) m _ z f00 «+i ^ /-00 a n + 1 

dxi - - -dxn+i 

= ( - D - H X - n - i W M - M M W ] , (3.8) 
X [A-V^OnA)" - ' ] . (3.2) where 

O ^ i * • • OXn+i /.oo /.oo 3 r-

d-i(i) = il dydz dxlnx— K ^ + y + i s ) - 1 

(Notice for m>n, Ln
(m)(a,t) has no singularity at ^o Jo dxL 

a = — 1.) The first term, m=0, is of course, just the , 
term previously evaluated. XexpiJ (y+z) 

[Ly+z J 
g2 

y+z 

x r tyz ~\}~\ 
9) __^_r»+^iin (3. 

X C g V - i W D ^ l + a ) - " - 1 . (3.3) x+y+zL y+zJU 

Summing over «, we obtain /3_i(7) = i2 / dydy'dzdz' I dx hue- (y+^-Hy'+z')"1 

' 0 J 0 dxL 

F<»(a,0 = ££» ( o > («>0 X g ( x ; y,*; / / ) eXp*{ ~X+h(y,z)+k(y',z') 

where 
The geometric series converges provided that the radius r r l 1 "1 
i? of the circle in Fig. 2 is taken as R>g2y^i(t); the g(x',y,z',y',z'):=\ l + # 1—; ; 
pole in Eq. (3.4) then lies within the contour. (This is ' Ly+z y'+z'J 
possible only for a restricted range of t.) , 

The inverse Mellin transform of F®} (a,t) is fo(y z) - . (y+z), 
y+z 

(3.11) 

^2 and 

*<»M=- - r c i - i W O ] „_ lW=;, ^ 2 ( , + 2 ) - 1 My+z) 

Xe+iv[l--g*y-i(t)]/2s-l+g*y-i(t) ^ (35) 0 

Xexpi (y+z) . (3.12) 
which is identical to Eq. (2.26). The second term? [y+z 

A lyz 
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(See Appendix A for further reduction of these integrals 
and evaluation for special cases.) Equation (3.6) now 
becomes 

g2 

Ln^(a}t)==~T(-'a)e-i^2(l+a)--{2Zg2y^1(t)2
n-1 

X [g 2 M*)]+ ( » - l )[g2T-i«]w-2C^-i(0] 

+^[^ 7 - iW] w - 1 [gViW]} . (3.13) 

The sum over n is 

F«(a ,0«EL» ( 1 ) (« ,O 

g2 |2«»«_ I(0+iVi(0 
=—r(-a)e->,ra/2l 

. (3.14) 

a+1 — iy-xit) 

0+l-g2Y-i(/)]2 

Note that Fm(a,t) has a second-order pole at a—— 1 
+g2y_i(iO- The inverse Mellin transform of F(r){a,t) is 

5( ')( J , ()=-? (»'(^)s ![25-1«)+1-i(0] 

+-[ /3_ 1 W+T-i(0 '7- iW]-
x2 Ja 

X [ r (-a)e-«"%a]a=_i+927_ l ( t ) 

+J*D*-i«)+7-i(0iM«)] 

X [ l n 5 - ^ T - ^ ( l - g 2
T _ i « ) ] } , (3.15) 

where 

dx 

Thus, the sum of the second leading terms behaves 
asymptotically as (lns)sa(>t) and dominate the sum of 
the leading terms provided the coefficient of In? in 
Eq. (3.15) is different from zero. The integrals 17-1 (0 
and 0-i(t) are rather complicated, but, at 2=0, it may 
be shown that /3_i (0)+7-1 (0)i;_i (0)^0. (See Appendix 
A.) 

IV. THE REMAINING TERMS AND DISCUSSION 

It is clear from the foregoing results that the hope 
that summing leading terms of the perturbation series 
will give the correct high-energy behavior is open to 
serious question. By keeping various additional terms, 
we have obtained results quite different from the sum 
of leading terms alone. In particular, we have shown 
that the sum of second leading terms dominates the sum 
of leading terms. This conclusion is not as strange as it 
sounds. While the inverse Mellin transform £w

(0)(^,/) 

of Eq. (3.3) behaves like Qns)n/s, and the inverse 
Mellin transform £n

a)(s,t) of Eq. (3.13) behaves like 
(In?)*1-1/,? as s—>oo? there are more terms of the latter. 
[Notice the factor n appearing in Eq. (3.13).] There
fore, for fixed s, no matter how large, we will eventually 
reach a number m, such that for n>mi £n

a)(s,t) 
> £ n ( 0 ) M . 

Taken at face value, Eq. (3.15) indicates a second-
order pole in the angular momentum plane at I 
= g2Y_i(/) — l.10 Although it may disappear when addi
tional terms are kept, a second-order pole is not in 
contradiction with the general result of Lee and 
Sawyer11; i.e., the scattering amplitude of the sum of 
the ladder graphs is meromorphic in / for Re/> — §. 

It is now natural to study further terms in the 
expansion (3.1) for m>\. Our objective is to see 
whether by including more terms we may not regain a 
simple Regge behavior. To put it succinctly, can we 
obtain 

£0M)= £ &m)(s,t)~p(t)sc w (4.1) 

with 

«W=-l+g 2 7- i (0-^ 4 C/5- i« 
+ Y - i ( ^ - i « ] + ' - - , (4.2) 

such that (3.5) and (3.15) are but the first two terms 
in the expansion of Eq. (4.1). The calculation of 
&(m)(s,t) becomes rapidly more complicated. However, 
we are able to show that F{m){<x,t) has the general form 
(see Appendix B), 

g2 

jF<w>(a,0 = —T(-a)e- i jra/2(-l)m+1 

X +RM (at) , (4.3) 
[ a + l - £ 2 7 - i « ] m + 1 

where Rm(a,l) is a sum of poles of order m or lower at 
a = - l + g V i ( 0 . If the "leading term" in F^m)(a,i), 
i.e., the first term in Eq. (4.3), is now summed over m, 
the result is 

00 g2r(—a)er i i ra l2 

1 
X-

«+i - [g 2 7- i (0 -^ - iW] / [ i+gVi (0 ] 
, (4.4) 

where 

g2r[-a(0>-i,ra<<)/2 

£ (s.t) sc 

Tr t l+gViW] 

a(0 — 1 
l+gVi(0 

•w, (4.5) 

(4.6) 

10 R. Oehme, Phys. Rev. Letters 9, 359 (1962). 
11B. W. Lee and R. F. Sawyer, Phys. Rev. 127, 2266 (1962). 
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This summation procedure has, thus, restored the 
simple Regge behavior. Of course, this procedure suffers 
from the same defects as the original summation of 
leading terms. Presumably, the way to proceed further 
is to sum the terms in Rm(a,t) to produce poles at 
a=a(t) as given in Eq. (4.6) and then to sum the most 
singular of these poles. However, the integrals which 
enter become more complicated and the enumeration 
of relevant terms correspondingly more difficult. 

Note that if Eq. (4.6) is expanded in powers of g2, 
the result is Eq. (4.2). It has been observed by several 
authors that, as 2—>4, the function Y_i(0^7r(4—i)~1/2 

so that a(t) as given by Eq. (4.2) becomes infinite at 
/=4. However, one can see from Eq. (Al) that as 
/ ->4 , iy_i(0 [2+(7r/2)](4-/)-1 /2 ln(4-0. Hence, 
no matter how small g2 is, the transition from Eq. (4.6) 
to Eq. (4.2) is not valid for t near 4. If Eq. (4.6) is 
used instead in this region, the singularity of y~i(t) 
will not lead to a divergent a(t)}2 The importance of 
further terms in the expression for a(t) is made apparent 
by the fact that at t=0, lma(0)^0 according to Eq. 
(4.6), whereas a(t) should be real for £<4. 

As mentioned by Bjorken and Wu,5 and as is apparent 
from our results, there is a close relation between the 
singularities in the a-plane and the singularities in the 
complex angular momentum or /-plane. Equation (3.4) 
and (3.14) show that a simple pole in a gives a simple 
pole in /, while a double pole in a gives a double pole in 
/. This one to one correspondence is not surprising 
since the Mellin transform has properties very similar 
to the projection of partial wave amplitudes. According 
to Oehme and Tiktopoulos13 the nontrivial singularities 
ofF(M), 

1 r 1 / s \ 
F(t,l)=- / ds—Ql(l+—) 

If \ If. 
X{As(t,s) + (-iyAu(t,s)}, (4.7) 

4 

are determined by the behavior of As(t,s), and Au{t,s) 
for large s. In this region, 

Q 
\ 2o2/ 

r(H-i) 
.1/2 (qty+h (4.8) 

2q2/ T(Z+3/2) 

so the important part of Eq. (4.7) has the form of a 
Mellin transform with a~l. If £(s,t) has the same 
asymptotic behavior as As(t,s) or Au(t,s), as is true in 
Eq. (3.4) and (3.14), then L(a,t) and F(t,l) must have 
the same singularities. 
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APPENDIX A 

Here we evaluate the three functions rj-i(t), 5_i(/), 
and j&_i(0. 

oo -.oo 

?7_i00 = <n dy I 
Jo Jo 

dz{y-\-z)~l\n(y+z) 

Xexpf i\ 
<• 

yz 
t (l-ie)(y+z) 

L-y+z ) 

«00 ^.00 

= i dn dRlnRexp{iR[it(l-^)-(l-ie)2} 
Jo Jo 

=- [ dfii-m-iVT1 

Jo 

X J m [ l - M l - V ) ] + 7 + i -

2 fr Trl a— 1 1 a—\ 
— y+i- In h- ln(4-0 In 
taiL 2J a+1 2 a+1 

+<^-HV)}'(A,) 
where 

and 
7=0.57721 • • • , Euler's constant, 

/ r* ln(l-f) 

Jo f 

is the Spence function. For t=0, v-i(() reduces to 

i M ( 0 ) - - [ 7 + * r / 2 ] . (A2) 
^oo /.oo /.oo fl t 

5-i(t) = i I dy I dz I dxlnx—| (x-^-y+z)^ 
Jo Jo Jo dx{ 

r / {y+zy-tyz\ 
Xexp —i[ x-{ J 

L \ x+y+z / 
+y+z 

(A3) 

For ^=0, 8-i(t) can be reduced to a one-dimensional 
integral, 

J o 

X(l-X)(X-2) r1 (1-X)(1+X) 
5_i(0)= / dX— - + / dX-

[X2-X+l]2 Jo [X2-X+l]2 

X \y+i- ]-lnX+ln[X2-X+l] 

7r~ir27r/ 1 

( 1 - X ) ( 1 + X ) 
+ dX-

o [X2-X+l]2 ln[X2-X+l]. (A4) 
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l3-i (t) = i2 I dydyrdzdzf I dx ln#— 
Jo Jo dx 

x{(y+z)-i(y'+z')-ig(x;y,z;y',z') 

Xexpi —x+h(y,z)+h(y',z') 

The final result for jft-i(0) is 

[ 7T"1 4 r 27T"1 

2TT r1 l n ( l -A 2 ) 
+ — + 1 6 / d\^_ _ . (A9) 

./o 3v3 [X2+3]2 

where 

+ / ^ 0 w ; / / ) ( -) , (A5) 
\y+z y +z / J J 

g(x,y,z', y/)=\ i+z 1--—-
I Ly+z y+2'JJ 

The important point to note is that the last three 
terms of jft_i(0) do not equal zero. 

APPENDIX B 

A derivation of Eq. (4.3) is given. We start with 
Eq. (3.2), 

tyz 
(A6) 

h(y,z) = (y+z). 
y+z 

For £=0, jft_i(/) is reduced to 

/?_i(Q) = ;2 f dy'dz'(y'+z')-1(rW+*'> 
Jo 

/.GO 

X / dydz(y+z)-~1e~i(y+z) 

Jo 

1=0 

where 
i (~l)n+1 

Ln(
m>l)(aj) =—{ig*)n+lY(--a)e--i™l2 

7T2 ( l + a ) * + 1 

(Bl) 

X 
( l+a )™(- l )™- ' /-00 

(w- / ) ! / I 

X-

•l /*a 

Jo 

n+1 

d#r • -dxn+i 
-[A-V^lnA)"*-*]. (B2) 

r00 a 
X dx hxx—[g(x; y}z; yf

1z
,)e~ix~\. (A7) Firs t , expand the factor 

Jo dx 

The x integration is done first : 

dx \nx—£g(x; y,z; y\z')e~ix~] 
o dx 

where 

and 

n+l I n+1 

on*<]'-iiE npn*jvw, (B3) 
i = l Zi=0 i = l 

where 2Z*=in+1 ^ = / . Since U<l<m<n, the sum in Eq. 
(B3) contains terms which are independent of some of 

|~ J l the x/s . The integrations over these x/s may be done 
= 1 y+i-\-e™Ei(-to}), (A8) trivially and only the lower limit x{=0 contributes. 

Let us define these x/s to be x^, k = 1 • • •, n<t with 
Mi<M2< • • *<M«2

 a n d t n e remaining x/s to be xpp 

7 = 1 , • • •, wi with p i < p 2 < • * •<£»! and ni+fi2 = n+l. 
In order to expand [lnA]m~z, let 

w - l = ( y + 2 ) - l + ( / + / ) - ! , 

Ei(—ico) = — / J /x—. 
Ay=#y+Xy+i+;yy+2y, 

. . . . , • ^ i i i A i = A i , 
Ihe remaining integrations may be done with the help 
of Erdelyi,14 5 y = Ay- A y _ r V , i = 2, 3, • • •, n; 

then 

(B4) 

J dy'dz'(y'+z')-1e-i^'+^ 
Jo 

/.00 

X / dydz(y+z)-le~^y+z)ei<Ji Ei(-ico) 
Jo 

r 2TT1 2TT r1 ln ( l -X 2 ) =fln21+^~^-16rx 
L 3\C3J 3V3 Jo 

and 

[> 2 +3] 2 Then 
14 A. Erdelyi, Higher Transendental Functions, Bateman Manu

script Project (McGraw-Hill Book Company, Inc., New York, 
1953), Vol. II, p. 144. 

[lnA]w~ 

A=I lA f c , 
fc=i 

n 

lnA= 23 lnA&. 
&=i 

m— I n 

mft=0 fc=l 

(B5) 

(B6) 



2748 T . L . T R U E M A N A N D T . YAO 

with Now we can sum over /, 

E mic — in—l* 

Consider those terms in the expansion of Eq. (B2) 
which can be expressed solely in terms of /3_i(£), 7- i (0 
and ?7_i(/). To this end, note that, if pj+i>pj-\-l for all 
j , A and eiJ break up into factors which depend only 
on xpp yPp zpp yPi_1? zPj^ or on yMk9 z^ nh^pj-1. (The 
analogous electrical circuit is a very useful means for 
obtaining this result.) Thus, the integrals break up 
into products of fivefold and twofold integrals. From 
Eq. (B3) we select only those terms with h~0 or 1 
with the condition that / i = / n + i = 0 and /y_i=0 when 
Ij=l. There are (n—l)l/ll(n—2l)\ terms which satisfy 
this prescription. From Eq. (B6) we select those terms 
with Mk=0 or 1 with the condition that if Zy=l, then 
my=w/_i=0. There are (n—2l)l/(m—l)l(n—m~l)l 
terms which satisfy this prescription. The contribution 
of all of these terms taken together to Ln

im>l)(a,t) is 

g2 ( _ i ) - K 
Ln

{m'l){a,l)^~-Y{-a)e-i7raj2~ 
(a+1)- •m+l 

X 
(n-l)\ 

ll(m—l)l(n—m—l)\ 

(B7) 

[Here the symbol ^ denotes the contribution of these 
terms to Ln

(m~l)(a)t).'] Summing over n, we obtain 

CO g2 

X ( _ l ) - + i -

x E 

(w-/)!Z! 

[ £ 2 Y ~ i « > 

Lg40~imiLg2v-i(t)yn~i 

(n~l)l 

n=m+i (a+l)n~m+1 {n~m~l)\ 

The infinite sum over n can be done, 
00 [g27-i00]w~w~* (n~l){ 

(B8) 

w=w+z (o;+l)n-m+1 (n~m—l)\ 

6" # 
lj,-{m 

where #=g2y_i(/). 

aw p xm i 

to . (a+l) zo;H-l-- x. 
(B9) 

F ^ M = E^ ( 'M )M r(-a)e--^2(-l)w 

i»o 

XE 
i 

*=o (m—l)\l\ 

d 
X-

dx* 

•Cg 4 /S - i (0 ]W- i (0 ] w - i 

l i 

.(a+l)la+l~xJ 

g2 1 d m 

= ~T(-a)e-iiral2(-l)m+l 

7T2 W! d # w 

X 
a+l — x\ a+1 

V i ( / ) 

m-f-1 = —r(-o£)e-* ' a / 2 (~l ) 

CgV-iW+^i(0(«+D]w , N 

x (BIO) 
( a + 1 — x)m+l 

which is the first term in Eq. (4.3). 
The remaining terms in Ln

im'l)(a,t), when summed 
over n, produce a pole at a = — l+g 27~i(0 of order m 
or lower. To see this, notice that the only factors which 
depend on n in the expansion of Eq. (B2) are (1+a) 
and 7_i(/), because the power of 7-1 (/) is determined 
by the number of yMfc, zMA. integrations remaining after 
all the logarithms have been integrated. The dependence 
on n of the number of any specified type can be deter
mined quite simply for n^>m. For the type just con
sidered, the dependence is nlnm~l=nm. For any other 
type of integral, there will be p>0 conditions on the 
indices of the variables; e.g., py+i=Pi+l for some j , 
4 = 3 for some k, etc. There can be only nm~p terms of 
this type. For large n the sum of these terms over n is 
proportional to 

E ( - ) nm"v, 
n \ 1-f-Qj / 

which produces a pole of order m—p+1 at a = —1 
+g27_i(/5). We do not answer the question of what 
happens when these poles are summed over / and m. 


